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Two methods, Ml and 62, for improving numerical Hartree-Fock (HF) radial functions 
during an SCF iteration are considered. It is shown that when rotations are introduced 
into the SCF process, functions can be improved one at a time, without direct concern 
over orthonormality conditions. Convergence characteristics for various classes of HF 
problems are considered. Generally Ml has the faster rate of convergence but when no 
exchange is present MN2 is preferable becoming, in effect, inverse iteration with a difference 
correction. In all cases, except the hydrogenic one, the asymptotic rate of convergence 
of the SCF process is linear. 

1. INTR~DUC~~N 

The Hartree-Fock (HF) approximation Y to the total wavefunction of a many- 
electron atomic system is a type of central-field approximation. However, instead of 
prescribing the field of force the HartreeFock method simply requires Y to be an 
antisymmetric configuration state function of central-field type with radial functions 
such that the energy is stationary with respect to variations in these functions [l]. 
This leads to a system of non-linear, integrodifferential equations known as the 
Hartree-Fock equations. For ground states or the lowest states with a given symemtry 
the energy is a minimum and the Hartree-Fock approximation may be viewed as the 
“best” approximation of central-field type. For this reason it is an important approxi- 
mation in atomic structure theory, one often used as a standard for comparison 
purposes. 

Hartree-Fock equations frequently are solved by an iterative process referred to as 
the self-consistentfield (SCF) method. In an earlier paper [2] two numerical methods 
of solution, Ml and M2, were proposed which were shown to have far greater stability 
(and hence better convergence properties) than “standard” methods [3,4] based on 
Hartree’s procedure [l]. The instability of the latter, demonstrated by Griffin et al. [SJ, 
was often associated with several open shells of the same symmetry, such as Ti 3d24s4d, 
where an orthogonality constraint applies. In many cases, the first method (Ml) 
converges rapidly even though it essentially ignores the orthogonality requirement. 
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But in cases such as He 1~2s %S, where there is a strong orthogonality constraint, 
Ml generally fails whereas the second method (M2), which improves pairs of radial 
functions so as to retain orthogonality between them, performs satisfactorily. 
Considerable experience has been gained with these methods. 

In this paper the Hartree-Fock calculations are classified according to the type of 
orthogonality constraint present and the role of Ml and M2 studied. When radial 
functions are constrained by orthogonality, the Hartree-Fock energy must be 
stationary to first order with respect to perturbations in the form of rotations. It will 
be shown that when the energy expression is invariant under rotations of a given pair 
of functions, the case may be treated as though the orthogonality requirement for 
that pair was not present. When the energy expression is not invariant, rotations 
may be introduced into the SCF process for finding the stationary energy. Then M 1, 
which requires fewer computations per cycle, again has the better convergence 
characteristics, but a modified form of M2, which we denote by 6?2, is needed to deal 
with the special case where no exchange is present. 

The classification of the various cases and the convergence characteristics of the 
methods will be illustrated primarily by a study of the two-eletron problem. We 
conclude with some general comments for more complex systems. 

2. PROPERTIES OF THE HF EQUATIONS 

The HF equations for lsnl ls3L states of two-electron systems illustrate many of the 
properties of the HF equations. Let the radial factor for an nl electron be R(nZ; r) = 
(l/r) P(nl; r) where P(nl; r) is the radialfunction. Furthermore, let us assume that 

(nl ( n’l} = Iy P(nl; r) P(n’Z; r) dr 
0 

where 6nl,n,l is the Kronecker delta function. Then the energy for the state (assuming 
nl # 1s) is given by the well-known expression [2] 

E(hll~3L) = I@) + &?l) + FO(ls, 4 f & Gz(ls, nl) (2) 

where the “+” sign refers to the lL state, “-” to 3L. Also, 

Z(d) = - ; (id ( L1 j nl), Lz=$+Z-!y 
r 
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where Z is the atomic number, 

Yk(nZ, n’l’; r) = L’ (+)” P(nl; s) P(n’l’; s) ds 

+ jm (f)“” P(nZ; s) P(n’l’; s) ds, 
7 

and 

F7G(nZ, n’l’) = jom P2(nZ; r) (+) Yk(n’Z’, n’l’; r) dr 

G”(nf, n’f’) = jaw P(nl; r) P(n’2’; r) (+) Yk(nl, n’l’; r) dr. 

Because Eq. (2) assumes the orthonormality conditions of Eq. (1) apply, Lagrange 
multipliers must be introduced into the variational process. Let E,~,~‘~ = E,‘~,~~ be 
the Lagrange multiplier associated with Eq. (1). Then 

must be stationary with respect to variations in both P(ls; r) and P(n& r). Applying 
calculus of variations to this expression we find radial functions satisfying the 
stationary condition are solutions of the equations 

I Lo - z Y”(nZ, nl; r) - clI,lJi P(ls; r) 

=*-L(2) 
21+1 r YVs, nl; r> P(nl; r> + &,o~l,,,~P(nl; r) 

/Lz - i YO(ls, 1s; r) - %Z.T%Z 1 P(nl; r) 

z *-L(L) 

2/+1 r 
Yz(ls, nl; r) P(ls; r) + &.O~,~.lsP(ls; r). 

The parameters E,~.~‘~ are referred to as energy parameters with E,,~,~~ a diagonal 
energy parameter and ~~~~~~~ , nl # n’l an ofidiagonal parameter. For the ls2 ?S state 
(where nl = 1s) there is no exchange and the HF equation becomes 

! Lo - : YO(ls, 1s; r) - ~~~~~~~ P(ls; r) = 0. 

In each case the boundary conditions are 

P(nl; 0) = 0 and P(nZ; r) -+ 0 as r-b co, 

and we adopt the phase convention P(nl; r) > 0, r + 0. 
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Several cases can now be identified 

(1) lsnl le3L, nl # ns. In this case there are no off-diagonal neergy parameters 
and each equation is a linear integrodifferential equation of boundary value type if 
the other function is considered fixed or given. 

(2) lens 3S. In this case it readily can be shown that the wavefunction yielding the 
energy expression of Eq. (2) is invariant under a rotation of the radial basis. The 
wavefunction for lens 3S is a Slater determinant and can be written as 

Y(lsns “S) = (l/r,r,){P(ls; rJ P(ns; r2) - P(ns; rl) P(ls; rz}) x I m 3S> 

where / ss 3S) is a spin-angular factor independent of the radial functions. The factor 
depending directly on the radial functions may be expressed in matrix vector notation. 

Then 

P(r) = [P(ls; r), P(ns; r)]‘. 

P(1.r; rJ P(ns; r2) - P(ns; rJ P(ls; r.J = P(rJr [-y i] P(rJ. 

Now let us rotate the radial basis and define 

P*(r) = OlP(r) 

where 

C=[-R t], a2+b2=1. 

Then 
P(r) = GP*(r) 

Applying the transformation and performing the indicated matrix operation we find 
that the radial factor 

PYrI)lr [-(f k] W2> = P*(rI>lT 0 [-y i] OTp*(r2) 

= P*(rd]’ [-y i] P*(r,). 

In other words the radial part of the total wavefunction remains unchanged when 
evaluated in terms of the rotated basis. Consequently for a given total energy the 
solutions to the Hartree-Fock equation are not unique. 

The effect of such a rotation on the HF equations is a transformation of the energy 
parameters. Let E and E* be matrices of energy parameters for P(r) and P*(r) respec- 
tively. Then 

E* = lzko=. 
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The standard solution from this set of possible solutions is the one suggested by 
Koopmans [6] which minimizes the energy of the ion. This solution is characterized 
by off-diagonal energy parameters equal to zero [6,7] so that in our case l ts,ns = 0. 
Thus the equations for this case are the same as those for (1) though a general method 
of solution should be able to detect when this representation applies and set certain 
off-diagonal energy parameters to zero. When all off-diagonal energy parameters are 
zero Slater [8] refers to this as the diagonal representation; however, mixed situations 
may also occur as in 192~3s 3S, where +s,3s = +es = 0 but all others are non-zero. 

(3) lsns ?S, ns # 1s. Now the wavefunction is 

!P(lsns ?S) = (l/r,r,){P(ls; rl) P(ns; rz) + P(ns; rl) P(ls; rJ} I ss IS> 

which is not invariant under a rotation of the radial basis. The HF solutions are 
functions which leave the energy stationary with respect to all allowed perturbations. 
A possible perturbation is a rotation and so the energy must be stationary with respect 
to such rotations. 

3. EFFECT OF ROTATIONS 

Let us consider the lsns ls3S case again and apply the perturbation 

which maintains orthogonality of the orbitals. Substituting into Eq. (2) we get 

E( lsns ‘~“9 = EHF( lsns l4S) 

+ 2(1 5 l){RO(ls, ns; ns, ns) - RO(ls, Is; lsns)}~ 

+ otr17 (3) 

where RO(ol, /3; 01’, /3’) is a Slater integral defined as 

RO(or, fi; a’, p) = Irn P(a; r) P(d; r)(l/r) Y”(& fl’; r) dr. 
0 

The stationary condition of the Hartree-Fock energy requires that 

dE 
d7 n=o 

= (1 * l)(RO(ls, ns; ns, 17.3) - RO(ls, Is; Is, ns)} 

z.2 0. 

We now see that for the 3S state, where the “-” sign applies, this condition is satisfied 
for all radial functions. This corresponds to the case where the total wavefunction was 
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invariant under a rotation of the radial basis and so this result may be used to 
characterize such cases. For the ?S state the condition 

RO(lJ, nJ; n5, ns) - RO(ls, Is; Is, ns) = 0 (4) 

must hold. We refer to this as the stationary condition. 
Suppose now that at some intermediate stage of the SCF process we have orthogonal 

radial functions, P(ls; r), P(ns; r) such that 

RO(ls, ns; ns, ns) - RO(ls, IS; Is, ns) = f (5) 

where R” is evaluated using radial functions P. Clearly the stationary condition of 
Eq. (4) does not hold, that is, the stationary point with respect to rotations has not 
been reached, and a further rotation is required. Let 

where 71 is to be determined such that Eq. (4) is satisfied to first order in 7. Substituting 
Eqs. (5) and (6) into (4) and using the relations 

FO(% P> = RO(% P; a, P) = RO(P, a; B, 4 

Coca, B) = Rota, Is; /‘A 4 = R”(a, a; B, B) 
we get 

f + @“(l& 1s) + FO( ns, ns) - 4G”(ls, ns) - 2F”(ls, ns)} + O(T~) = 0 

Neglecting the terms fi(n”) (and dropping the bars) we have 

RO(ls, ns; ns, ns) - RO(ls, Is; Is, ns) 
T = 2F”(ls, ns) + 4G”( Is, ns) - F”( Is, 1s) - FO(ns, ns) 

This expression, when applied iteratively, would define a sequence of rotations 
converging to functions satisfying Eq. (4). In fact, it is a Newton-Raphson iteration 
with respect to rotations for the stationary condition. 

An exact expression for 7 can readily be obtained. Substituting (6) into (4), multi- 
plying by (1 + q2)2 to eliminate the denominators and noting that Slater integrals 
involve products offour radial functions, we find 77 is the root of a quartic polynomial 
whose coefficients are sums of Slater integrals. In their paper on a natural orbital 
calculation for the helium atom, where a similar minimization problem arises, Reid 
and Ohrn [9] derive expressions for the five coefficients and then proceed to find a root 
of the polynomial by the Newton-Raphson method, starting with n = 0. Our 
procedure is equivalent to theirs except that we redefine the origin of the polynomial 
after each iteration so that only the condition and its first-order variation need be 
evaluated. For the general problem, where the conditions may be fairly complex, 
fewer expressions need be derived and incorporated into a computation by this 
approach. 
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4. SOLUTION OF THE RADIAL EQUATIONS 

The radial equation for a single electron in a fixed core is an integrodifferential 
equation of the form 

y” -t {f(r) - c) y = j- qr, t) y(t) dt 
0 

Y(O) = 0; y(r) - 0, r-03 

where the integral equation part includes the exchange effect as well as the off-diagonal 
energy parameters, if any. Both Ml and M2 deal with discretized approximations 
to Eq. (8). 

For simplicity, let the range (0, rM) for suitably large rM be subdivided by equally 
spaced points ri = ih, i = O,..., M, h = r,+,/M. Let yi be the computed approximation 
to y(r,), let y = (y, , y, ,..., y,,,-J be the column vector of values, and let the 
boundary conditions be y, = y.+, = 0. A direct discretization of Eq. (8) at each of the 
points ri , i = I,..., M - 1 would lead to a system of equations of the form 

(T - ~1 - K)y = 0 

where T is a band matrix (the band width depending on the order of the discretization 
of y”) and K a full matrix. The above is now an eigenproblem and inverse iteration [lo], 
for example, would require O(M3) multiplications for its solution because of the 
denseness of the matrix K. However, exchange terms can be evaluated efficiently as 
the solution of certain ordinary differential equations. (For the independent variable, 
p = log, r, these equations have an integrating factor and the solutions can be 
obtained through outward and inward integration [3]). As a result, it is possible to 
describe an iterative procedure requiring only Q(M) multiplications per iteration. 

Let { yck)(r), K = 0, I,...} be a sequence of approximate solutions. Define 

g(“)(r) = jm K(r, f) y’“‘(t) df 
0 

and 

d2 + f(r) - C/ yck+l)(r) = g(“)(r). 
dr2 

For the latter, the familiar Numerov method based on the discretization 

s2yi=h2(l +;)y:, i= I,...,M- 1 

(9) 

leads to a tridiagonal system of equations 

(T _ &) y’k+l’ = CM (10) 
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where T = (tij) and S = (sij) are (M - 1) x (M - I) tri-diagonal matrices with 

i=j, 
1 i - j 1 = 1, h = f(rj), 
1 i-j1 > I, 

and 
+Qh2 

iJ&2: 

i _ j, 

Sjj = ~ . I -,jI = 1, 
0, ,i-j[ > 1. 

The column vector c = (cl , c2 ,..., c&,-r)= has components 

hi 
C? = yj (&+1 + 1ogi + &I) i- ?,!Ic), gi Z g(“)(Q) 

and P) is an estimate of the truncation error acting as a “deferred” difference 
correcztion [I 11. 

Unlike Eq. (8), (9) is no longer an eigenvalue problem and unique solutions to the 
discretized approximations of Eq. (10) will exist for all values of E provided the 
coefficient matrix (T - ES) is nonsingular. In order that solutions of Eq. (10) converge 
to solutions of Eq. (8) it is necessary to define E = E(~) so that the sequence @), 
k = 0, 1, 2,... converges to an eigenvalue. A natural choice is the Rayleigh quotient 
for ytk). (In the case of one electron, the quotient can be shown to be the functional 
for which y(r) is the stationary solution: when more than one electron is present and 
f(r) also depends on y(r), the quotient is no longer exactly stationary.) At the same time 
we would like to have the iterations converge to a normalized eigenfunction of Eq. (8) 
where normalization is defined in terms of numerical integration. 

Define (u, v) -- Jr u(r) v(r) dr to be a computed approximation to the integral 
using only values of the vectors u and v, and 11 u II2 = (u, u). The method Ml combines 
all these ideas as follows. 

For k = 0, 1, 2 ,..., 

(1) <(7d = yW-[TyUd _ CW]/y'"'TSy~W, 

(2) [T _ <(R)S] Z(kll) = ‘$ls), 

(3 1) y"i+l' _ z(k+l) 
/I' z 

(k+l) 
1~. 

We will show later that Ml performs remarkably well in many cases. However, it 
breaks down when /I cck) I! is exceedingly small as, for example, when no exchange is 
present at all. 

In the case of a single equation, method M2 also computes zfk+l) as above, but 
rather than simply normalize the solution it solves a variational equation for a~‘~+~)/& 
namely 

[T - PS] az w+1,p, = SZ'"Tl' 
(11) 
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and forms an intermediate function 

"m+l) = zw+l) + &ck,~zc~+l,/& (12) 

which, when normalized, becomes y(“+l). In Eq. (12), d@) is chosen in such a way 
that 

11 v(k+l) 1; = 1 + 0([d0]2). 

Only for certain values of E will the solutions of Eq. (9) be normalized and Eq. (12) 
may be interpreted as the first two terms of in Taylor’s series expansion about E = @) 
of a normalized solution. 

Again, numerical difficulties will occur as ctk) -+ 0. If E(~) is not an exact eigenvalue 
of the matrix problem (T - &)y = 0 (which is a reasonable assumption), then, 
in the limit when cc”) = 0, zCkfl) also is zero; hence, by Eq. (ll), az(“+l)a/a~ = 0 
resulting in an undefined value of LIE tk) in Eq. (12). But with a slight modification of 
Eq. (11) whereby z(le+l) on the right-hand side is replaced by y(*), our method would 
make a smooth transition to inverse iteration for the matrix eigenvector problem. 
The latter has a cubic rate of convergence when the matrices T and S are symmetric 
and the Rayleigh quotient is used to define E ck), though rounding-errors reduce this 
rate once accurate solutions have been obtained [IO]. This modification is the basis 
for our revised method I%2. More explicitly, step (3.1) of Ml is replaced by 

(3.2) [T - Euc)s] Wuc+l) = syw, 

(4.2) y(7~+1) = z(k+l) + flw(k+l); p such that 11 y(i+1) ;[ = 1. 

Our matrix T is not exactly symmetric, but inverse iteration can also be defined 
for a differential eigenvalue problem, and when the latter has an orthogonal set of 
eigenfunctions, convergence can be shown to be cubic. Therefore, as long as the 
iterations of our discretized problem reflect properties of the differential problem a 
similar rate of convergence should be observed. 

When systems of equations are present, several additional factors must be con- 
sidered. All functions could be iterated simultaneously but generally a cyclic iteration 
is preferable where for each equation the best current estimates of other functions are 
used. The analogy here is similar to the Jacobi iteration for linear equations versus 
Gauss-Seidel iteration where the latter has the better rate of convergence for certain 
classes of problems [12]. 

A more subtle question is that of orthogonality. As was shown in Section 2, the 
function for 1~2s 3S will be orthogonal when ~~~~~~ = 0, but intermediate estimates 
may not be orthogonal. Some numerical experiments have shown that convergence is 
improved during initial stages by a Schmidt-orthogonalization process, (which changes 
the inner, more self-consistent functions the least), but that the asymptotic rate of 
convergence is decreased. A simple strategy orthogonalizes estimates at the end of 
every cycle. 

When a pair of functions is constrained through an orthogonality requirement as 
in 1.~2.~ ‘S, the method M2 described earlier [2] improves pairs of functions simul- 
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taneously in such a way as to maintain not only normalization but also orthogonality 
to first-order with respect to changes in the diagonal and off-diagonal energy 
parameters. This requires the additional computation of the variational equation for 
a~(~+l)/~~r n’l and, in general, M2 becomes a far more complex algorithm than Ml, 
particularly when combined with the concept of an acceptable solution to be described 
in the next section. But changing off-diagonal energy parameters indirectly introduces 
a rotation of the functions. As an alternative to M2 in this case, rotations can be 
introduced explicitly at the end of every cycle, following orthogonalization, and 
off-diagonal parameters can be computed directly. Suppose (n/j n’l) = 0 and the 
Hartree-Fock equation for P,r(r) is written 

where 2[Z - Y,,(r)]/r is the potential function and 2X,,(r)/r the exchange function. 
Multiplying the above equation by Pnl(r), integrating and using the orthogonality 
property, we obtain the result 

E nz,nz = <nl I J% I n0 - 2 co, f’dr> (+) [Ydr) P,dr> + x,&)1 dr 
‘0 

which is the Rayleigh quotient expression for the differential equation. Here we have 
assumed (nl / nl} = 1. Similarly, the equation may be multiplied by Pnt2(r) to yield 
the expression 

E n1,n’l = <n’l I Lt I n0 - 2 /a p,4r> (G) [L(r) P,dr> + ,J’dr)l dt- 
0 

which can be used to obtain estimates of off-diagonal energy parameters. However, 
in the general case 171, 

9nl%z*n’l = 9n’z%‘l,nz 

where qnl is the occupation number for the nl subshell, and it is desirable that our 
estimates also have this property. When qnl = qn’l , we use an average of the two 
expressions. When qnz # qnjz we let E,~,~‘~ = h/q,, , E,‘~,~~ = X/q,jl , subtract the 
two expressions and use the fact that (n’l 1 L, / nl) = (nl 1 L2 j n’l) to obtain the 
result, 

With the introduction of expressions for the potential and exchange functions, 
the expression for h may be simplified further [7], but for our purposes here it is 
sufficient to know that off-diagonal energy parameters can be computed given the 
radial functions. 
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5. THE SCF ITERATION 

With these comments, the basic stages in an SCF iteration for the general Hartree- 
Fock equations can be described. 

(1) Set ~,r,~‘r = 0 for all nl, n’l. 

(2) Estimate the radial functions. 

(3) Orthogonalize the radial functions. 

(4) Rotate pairs of functions according to Eq. (7). 

(5) Compute off-diagonal energy parameters but leave E,~,~‘~ := 0 whenever the 
wavefunction is invariant under rotations. 

(6) For each equation, in turn, starting with the innermost: 

(a) Compute the potential and exchange functions. 

(b) Compute enzsnz as a Rayleigh quotient. 

(c) Solve the differential equation using either Ml or c2 for a single equation. 

(d) Test if the solution is acceptable. If so, replace or improve the current 
estimate. Otherwise adjust cnl,nl and repeat (6c)-(6d). 

(7) Test for convergence of the SCF iteration. If self-consistency has not been 
achieved repeat (3)-(7). 

Simple estimates for radial functions are screened hydrogenic functions with an 
effective nuclear charge, &rr = 2 - unl , where u,r is a screening parameter. Scaled 
functions from other atoms or even functions from other terms of the same atom 
may be used. More elaborate estimates are functions from other methods such as 
Thomas-Fermi or Cowan’s statistical exchange [ 131. 

An acceptable solution of a radial equation is one for which P(n1; r) > 0, r 4 0 
(our phase convention) and one which has the required number of nodes, not counting 
the small maxima or minima in the tail of a radial function arising from the persistence 
of the exchange effect or the rotation of the radial functions by the orthogonality 
constraint. After the first or second iteration (depending on the accuracy of the 
initial estimates) solutions of the differential equation are usually acceptable. Tn this 
way, the same HF equations can be solved for 1~2s 3S, where the energy is a minimum 
and 1~3s 3S where the energy is only stationary. 

Normally, an acceptable solution replaces the current estimate of a radial function. 
However, when several electrons of the same type are present as in Is2 lS, the potential 
functionf(r) of Eq. (8) also depends on y(r). If, for example, the current estimate of 
the radial function is too diffuse, then the nuclear charge will not be screened enough 
and the solution of Eq. (9) will be too contracted. In this way, oscillations are intro- 
duced. These can be damped by the use of accelerating parameters, a. Let the functions 

of step (3.1) for Ml (or (4.2) for I%2) be denoted by TcK+l) and define 

p+l) = (1 _ a)~m+l) + ,p, 
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with 
p+l' = ='Iz+l) y /iI pt1, ii 

I/. 

When 01 = 0, the solution of the differential equation replaces the current estimate, 
but for 0 < oi < I, a normalized linear combination of the solution and the current 
estimate form the new estimate. This “averaging” process has the effect of damping 
the oscillations. 

No optimum methods are known for determining 01. When the same equation is 
solved repetitively, values of E’~) could be extrapolated using, say, Steffensen’s 
iteration [14]. If written as 

this leads to 
p+l) = (1 - a) E'k+l) + &k) . 

a = l/(1 - p-l), p = (@+l) _ pd)/(E'k) _ &-1)) (11) 

and requires that the equation be solved three times prior to extrapolation. Actually 
extrapolation should not be used until a linear rate of convergence is observed which 
requires four successive values [14]. For tightly bound electrons, the rate of conver- 
gence is sufficiently rapid that acceleration is not worthwhile. Also, in complex atoms 
changes in one function may occur because of changes in another. Such coupling 
can only be taken into account by extrapolating cycles of the SCF iteration, a process 
with a considerable amount of overhead, in general. 

A simple expedient that does remarkably well is to end‘each SCF cycle with three 
or more iterations each time selecting the least self-consistent equation. If one function 
is converging much more slowly than another and is selected three times consecutively, 
a value of p can be computed according to Eq. (12), and 01 = n@) adjusted as follows. 

cP+l) = l/4 + (3/4) 09), P<O 
= (3/4) a!(k), p > 0. 

In this way the accelerating parameter is increased when oscillations occur, and 
decreased otherwise. Clearly other values could also be used for the constants. 

A measure of self-consistency is the maximum absolute change in a function from 
one cycle to the next. Let 

P$’ = (P$‘(rl), P$‘(rJ ... Pz)(rMel))r 

be the vector of function values after the k’th solution of the equation for P,l(r). Let 
Pig+‘) be a similar vector at stage (k + 1) but prior to acceleration, if any. Then 

LlP$’ = max / Fy)(r,) - P$‘(ri) j . 

In going from the k’th to (k + I)st stage it should be remembered that the potential 
and exchange function are recomputed and it is this variation which accounts for 
the linear convergence of the overall SCF iteration, as shown by the numerical results 
presented in the next section. 
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6. NUMERICAL RESULTS 

The convergence of these procedures for the different cases mentioned in Section 2 
has been studied using a modified version of MCHF72 [15]. 

In Fig. 1, the rate of convergence of Ml for ls2P 3P of He is compared with that 
of %2, by plotting -log,,(dP$‘) versus the number of iterations. (In this case, since 
there is no orthogonality constraint, M2 and K2 produce similar results.) The initial 
estimates were screened hydrogenic functions with uls = 0 and us9 = 1. Clearly Ml 
has the faster rate of convergence. In both cases, convergence is linear after about four 
iterations. 

7- 
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FIG. 1. A comparison of the rate of convergence of Ml (dashed line) with M”z (solid line) for 
He ls2p 3P. 

The ls2p 3P case is a particularly simple one in that no orthogonality requirements 
are present. In Fig. 2, convergence for the most difficult state, 1~2s ?9 of He, is shown 
with initial estimates being the functions for 1~2s 3S. In one case, Ml is used along 
with orthogonalization and rotations at the end of very cycle. In the other, M2 
improves pairs of functions simultaneously so as to maintain orthogonality to first 
order. Again, Ml has the better convergence characteristics, but the rate of conver- 
gence is not as fast as for the ls2p 3P state. We conclude that, with the introduction 
of rotations, M2 need not be used to deal with orthogonality constraints. 

The 1~2.9 3S case again has no off-diagonal energy parameters, but the final functions 
should be orthogonal. Figure 3 shows the rate of convergence for two different SCF 
strategies. In both, the initial estimates are screened hydrogenic with al, = 0 and 
oZs = 1; Ml was used exclusively. In the first strategy, the functions are improved 
in turn, and then orthogonalized. Note that the 1s function does not begin to improve 
significantly until the 2s function has similar accuracy. Then both improve rapidly. 
Note also the leveling off of APzs . Though the HF equations have orthogonal 
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FIG. 2. A comparison of the rate of convergence of Ml (dashed line) with M2 (solid line) for 
He 1~2s ‘S. 

FIG. 3. A comparison of two strategies for orthogonalization for He 1.~2~ 3S using Ml. In the 
first (dashed line), each function is improved in a cycle, then 2s orthogonalized to 1s. In the second 
(solid line) after every improvement the least self-consistent function is orthogonalized to the other 
and a cycle is followed by four improvements of the least self-consistent function. 

solutions in the diagonal representation, the self-consistent solutions of the discretized 
problem have an overlap integral of about lo-* and so the orthogonalization process 
at the end of the cycle prevents further convergence of Pzs . In the second strategy, 
the equations are each solved in turn, followed by four improvements of the least 
self-consistent equation. After each improvement, the least self-consistent function is 
orthogonalized to the other. With this strategy, the solution of the 1s equation is 
avoided until the self-consistency of 2s is comparable. Note however, that LIP,, 
for k = 6 is now larger than at k = 1 because of the considerable change in Pzr 
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during the intervening iterations. The self-consistency for Pls improves rapidly and 
at k = 7 the functions have similar self-consistency as those at k = 6 for the first 
strategy, yet the former required the solution of only 10 equations, whereas the latter 
required 12. The erratic convergence after k = 7 is due to the orthogonalization 
process. In fact, the second strategy performs similar to the first (with fewer equations 
solved) if PI8 is improved when k = 5 and orthogonalization turned off as soon as 
the overlap is less than 10-5. 

When no exchange is present, M?! is the preferred method. Figure 4 shows the 
very rapid convergence for 1s 2S of He+- where the potential function f(r) does not 
depend on the solution. The initial estimate in this case was a screened hydrogenic 
function with c = 0.5. By contrast, the convergence of ls2 lS of He is much slower 
since f(r) now also depends on the solution. Furthermore, with LX = 0 a linear rate of 
convergence is observed, a rate which improved appreciably by the simple acceleration 
strategy described earlier. 

FIG. 4. Convergence of MN2 without accelerating parameters (solid line) for He+ 1s % and He 
19 IS compared with convergence with accelerating parameters (dashed line) for He 19 3. 

In complex atoms, the systems of equations are strongly coupled, but converge 
even with crude initial estimates, at least when no off-diagonal energy parameters 
are present. For example, when unscreened hydrogenic functions are used as initial 
estimates for Ra 7s2 (2 = 88), virtually no convergence is observed in the first two 
cycles except electrons appear to “sort themselves out.” After that convergence begins 
with LIP = max{dP,I} on the average reduced by a factor of about 0.156 per cycle. 
In these calculations, each cycle of the SCF process was appended with eight im- 
provements of the least self-consistent function. No function was ever selected three 
times in a row for acceleration to be introduced. 

In Table I, some values of dP are tabulated for various atoms or ions with initial 
estimates as indicated. The computation (CPU) times in seconds on an IBM System 
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TABLE I 
CPU Time in Seconds for Several Calculations Using an IBM System 370/168 

Atom/ion Z 

Be 4 

w+70 74 

La 57 

w+17 74 

Ra 88 

Ra 88 

Number of 
functions Configuration 

2 1s22s* 1s 

2 1 s22s2 ‘S 

13 4f6s2 2F 

13 4f6s2 =F 

16 7sz ‘S 

16 7s2 ‘S 

Initial 
estimates 

a=0 

o=o 

O=C 

o=c 

O=C 

o=o 

Maximum Time 
AP (seconds) 

1.2 x 10-s 2.04 

7.0 x lo-‘* 1.05 

4.8 x lo-@ 51.69 

3.6 x 1OW 41.36 

1.0 X 10-1 74.74 

9 x 10-Q 82.82 

370/168 are also reported. Note that convergence is more rapid for highly ionized 
systems. For W+‘O ls22s2, convergence is especially rapid. For neutral Be, dP is 
limited to about 1O-8 by the orthogonalization process in the same way as for the 
He 1~2s %’ case considered ear1ier.l For Ra 7s2, two different initial estimates were 
tried. Suppose the electrons are ordered in such a way that a lower index corresponds 
to a subshell closer to the nucleus. Let the number of electrons in the ith subshell be qi . 
In the first case, a simple screening law was applied, namely, 

In the second, 

As expected, the first required less computer time, but an inherent difficulty lies in 
knowing in advance which group is “closer.” Fortunately, this factor does not seem 
to be a critical one. It may be that an optimum ordering can be determined though 
it could depend on the degree of ionization. In Table II, the initial screening parameters 
for the first case are compared with the final screening parameter, defined so that 

where (r,r)nF is the mean radius of the HartreeFock radial function, and (T,~)~ 
the one for hydrogen. Some fairly extensive changes have occurred. 

Table II also shows the final degree of self-consistency of each radial function and 
the number of times a particular function was improved. For n > 4, the shells are 
sufficiently interpenetrating that changes in the radial function of one, result in changes 

1 The final total energy of - 14.57302316 a.u. agrees to 10 signiticant figures with that of Ratfenetti 
[16] who used an analytic basis for the calculation. But clearly this accuracy depends more on the 
implementation itself than the method. 
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TABLE II 

SCF Convergence for Ra 79 Starting with Screened Hydrogenic Functions 

screening 

nl Initial Final 
Number of 
Iterations APa, 

Is 1 0.7 8 8.1 x lo-l2 
2s 3 4.7 8 3.2 x 10-l” 

2P 7 5.8 8 4.7 x IO-" 
3s 11 12.9 10 2.9 x 1O-9 
3P 15 14.1 11 1.5 x 10-g 
3d 23 17.4 12 1.5 :< 10-D 
4s 29 25.1 14 2.1 :< 10-S 

4P 33 28.6 14 4.0 :< 10-e 
4d 41 33.6 14 4.0 x 10-e 
5S 47 42.3 14 5.5 :< 10-8 
5P 51 45.7 16 1.0 :< 10-S 
4.f 61 40.6 14 7.0 x 10-s 
5d 73 53.0 14 5.3 x 10-g 
6S 79 59.6 13 8.6 :< IO-8 
6P 83 63.4 17 6.9 ;< lo+’ 
7s 87 74.8 17 3.7 :< 10-8 

in the other, and all equations need to be solved about the same number of times. 
But for n < 3 fewer improvements suffice. 

7. CONCLUDING REMARKS 

The examples of the previous section illustrative the general convergence character- 
istics of the SCF process. They show that, when rotations are used to satisfy a statio- 
nary condition, convergence is observed in all cases with a scheme which improves 
a single function at a time. The improvement scheme Ml, which does not attempt 
to find a normalized solution of a boundary-value problem, in general has a faster 
rate of convergence than M2 or %2, which may be viewed as the first stage of an 
iterative process for finding a normalized solution. Though it was not illustrated 
explicitly, Ml encounters difficulties when no exchange term is present and the 
diagonal energy parameter is not known accurately. In this case %2 performs well 
being, in effect, inverse iteration with a difference correction. 

A study of the convergence characteristics of typical examples also has shown the 
SCF process to have an inherently Iineur rate of convergence, This is due to the 
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coupling between equations and also due to the fact that the functions g(k)(r) (and 
sometimesf(r)) of Eq. (9) depend on the solution. For this reason, we do not advocate 
solving Eq. (9) itself by a subiteration process but rather, recommend improving 
the solution with a single iteration of a rapidly converging process. 

Figures l-4 also show that after about four or five cycles the SCF iterations converge 
in a very regular, linear fashion provided no changes are made to accelerating 
parameters and the SCF cycle is not appended with additional improvements. Such 
linear convergence suggests that extrapolation techniques would be effective. However, 
the overhead in space would be high since all functions would have to be saved over 
three cycles before the SCF extrapolation process could be applied. This might be 
feasible if a very high degree of self-consistency is required, or convergence is very 
slow. For most applications, high accuracy is not required. It should be remembered 
too, that self-consistency does not guarantee accuracy. The latter also depends on the 
discretization error introduced by replacing the differential equation of Eq. (9) for 
example, by the linear system of Eq. (10). 

Earlier conventional methods for the numerical solution of the HF equations [3, 41 
relied on the matching of solutions from outward an inward integration for the 
adjustment of certain parameters. Both Ml and M2 are direct methods with the 
boundary conditions incorporated into the discretized problem. More recently, 
Cayford et al. [17] have proposed a similar direct approach, but one where the 
radial functions are improved by a generalized Newton-Raphson iteration (GNRI). 
Suppose Eq. (9) is to be solved for a solution vector ytk+l’ and an energy parameter, F, 
such that 11 y Ik+l) 11 = 1. Then the discretized problem, 

(T = &) y'"+l) = @9, 

(yc"+l', y'"+l') = 1 
> 

is a system of M equations in the M unknowns yili+‘),..., YE_‘:‘, and E. (Their dis- 
cretization is somewhat different from ours but that does not affect the main idea.) 
Orthogonality conditions involving y(“+l) can be added to the system of equations, 
and off-diagonal energy parameters, one for each condition, to the set of unknowns. 
In this way, orthogonality can be treated in a natural way and no arbitrary ortho- 
gonalization process need be introduced. The resulting system is now a non-linear 
system of equations, but special properties make possible the efficient solution of the 
problem by a generalized Newton-Raphson iteration, with the well-known quadratic 
rate of convergence. Typically four iterations are required for a convergence tolerance 
of lo-lo. This improvement scheme is then imbedded in the usual SCF process for 
obtaining solutions of the HF equations. Our experience, though, leads us to believe 
that difficulties may occur when orthogonality with inaccurate functions is required, 
particularly when many orthogonality constraints are present. Also, the GNRI 
method assumes the existence of a normalized solution for a given estimated potential 
and exchange function. Griffin et al. [5] show that zero, one, or two acceptable, 
normalized solutions may exist. In the case of the former, GNRI would clearly fail, 
and the latter tends to produce instabilities in the SCF iteration of certain confi- 
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gurations with 4d or 5f electrons. In the SCF-GNRI process, these problems are 
controlled by “tracking,” that is, the functions Y,,(r) and X,,(r) appearing in Eq. (11) 
are multiplied by a factor 8. Then, for 0 = 0, the solutions are all unscreened hydro- 
genie functions. With these as initial estimates, 19 is increased in stages until 6 = 1. 
Each time the results from one stage form the initial estimates for the next. Conse- 
quently, several intermediate stages must be solved, though convergence tolerances 
for these stages may be set correspondingly high. 

The essential difference between our methods is the way in which the sequence 
(~(~1, k = 0, l,...} is selected so as to converge to an eigenvalue of the integro- 
differential equation, Eq. (8). The methods of this paper use the Rayleigh quotient, 
whereas GNRI selects a value for which the solution of Eq. (9) is normalized. 
Method &?2 also relies on a normalization criterion for the improvement of the 
function, but is used only when the exchange effect is small. Earlier methods too, 
solved for normalized solutions, though not by the GNRI method, and SCF insta- 
bilities were observed. Ml, in particular, has been shown to have greater stability [2]. 
In fact, the calculation for Ra 7?, included in Table 1, converged without the necessity 
of resorting to tracking. 

In their paper, Cayford et al. include some data for an unrestricted Hartree-Fock 
calculation for Li 1~~2s. In order to compare our methods more reliably, the MCHF 
program was modified for this case. (Actually, only the orthogonality constraint 
between radial functions for orbitals of different spin had to be removed.) Starting 
with unscreened hydrogenic functions, using no acceleration, and with each SCF 
iteration simply improving the radial functions in turn, and then orthogonalizing 
the orbitals with the same spin, we obtained convergence to within numerical accuracy 
in eight SCF iterations. The final self-consistency parameter was dP = 4 x 1O-8, 
and the total energy, -7.432750920 a.u. The ratio of the potential and kinetic energy 
differed from the exact value of -2.0 by 2.0 x lo-$. By contrast, the SCF-GNRI 
method for a given mesh spacing, achieved convergence with an SCF tolerance of lo-lo 
in seventeen iterations, and the total energy was -7.432614303 a.u. When energies for 

four different mesh spacings were extrapolated, a value of -7.432750918 a.u. was 
obtained which differs from our value by only two units in the last place, or 
2 x 1O-g a.u. We conclude that our eight SCF iterations have converged satisfactorily. 
To test the effect of relying on normalization as a criterion for improvement we also 
solved the system of equations using z2 for all functions. This slowed convergence 
of the 2s radial function to such an extent that thirteen SCF iterations were required 
where eight had sufficed before. This rate of convergence is similar to the one reported 
for SCF-GNRT, but it is not clear from the data provided, just how tracking affected 
convergence. These results for Li 1.~~2~ as well as the earlier ones for He ls2p 3P, 
plotted in Fig. 1, both indicate that the SCF convergence rate may be slower when 
normalization is used as a criterion for the improvement of radial functions, at least 
when exchange effects are significant. 

The program MCHF72 [15], used here for the study of convergence, was designed 
to take advantage of properties of the Hartree-Fock equations. The discretized 
approximation may not satisfy these exactly, thereby limiting the convergence of the 

$3112712-6 
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SCF process. We do not view this as a serious defect, but a consistent scheme such 
as the one proposed by Cayford et al. [17] is certainly attractive. 

Fifty years have passed since Hartree published his first paper on the numerical 
solution of the radial equation [18]. Since then, many ideas have been proposed for 
the efficient solution of the Hartree-Fock equations [I]. The present methods are 
generally simpler, involving fewer iterative processes, and unlike earlier procedures, 
rarely rely upon accelerating parameters for achieving convergence. Experience 
seems to indicate that Hartree-Fock calculations now can be performed on a routine 
basis. 
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